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Abstract—Rain streaks, particularly in heavy rain, not only degrade visibility but alsomakemany computer vision algorithms fail to

function properly. In this paper, we address this visibility problem by focusing on single-image rain removal, even in the presence of dense

rain streaks and rain-streak accumulation, which is visually similar tomist or fog. To achieve this, we introduce a new rainmodel and a deep

learning architecture. Our rainmodel incorporates a binary rain map indicating rain-streak regions, and accommodates various shapes,

directions, and sizes of overlapping rain streaks, as well as rain accumulation, tomodel heavy rain. Based on thismodel, we construct a

multi-task deep network, which jointly learns three targets: the binary rain-streakmap, rain streak layers, and clean background, which is

our ultimate output. To generate features that can be invariant to rain steaks, we introduce a contextual dilated network, which is able to

exploit regional contextual information. To handle various shapes and directions of overlapping rain streaks, our strategy is to utilize a

recurrent process that progressively removes rain streaks. Our binarymap provides a constraint and thus additional information to train our

network. Extensive evaluation on real images, particularly in heavy rain, shows the effectiveness of our model and architecture.

Index Terms—Rain removal, rain detection, deep learning, rain accumulation, contextualized dilated network

Ç

1 INTRODUCTION

RESTORING images degraded by rain is beneficial to many
computer vision applications for outdoor scenes. Rain

reduces visibility significantly, which can impair many
computer vision systems. There are two types of visibility
degradation brought by rains. Distant rain streaks accumu-
late and exhibit atmospheric veiling effects visually similar
to mist or fog. The rain streaks accumulation scatters light
out and into the line of sight, and severely reduce the visibil-
ity. Nearby rain streaks generate specular highlights and
occlude background scenes. These rain streaks are diversi-
fied in shapes, sizes, and directions, particularly in heavy
rain, introducing severe visibility degradation.

Manymethods have been proposed to address the restora-
tion of rain degradation. Some focus on video deraining [3],
[4], [5], [6], [7], [8], [9], [10], [11]. Others focus on single image
rain removal. These methods regard the rain streak removal
problem as a signal separation problem [11], [12], [13], [14],

[15], [16], or by relying on nonlocal mean smoothing [17].
These methods have made progress to some extent, however,
they still suffer from some limitations. Because the rain
streaks and background textures are overlapped intrinsically
in the feature space, most methods cause non-rain regions to
lose texture details and be over-smoothed.

The rain degradation can be complex, and previouswidely
used rain models (e.g., [11], [12]) neglect some important
visual factors of real rain images, such as the atmospheric
veils caused by rain streak accumulation, anddifferent shapes
or directions of streaks. Moreover, many existing algorithms
operate in a patch-wise way with a limited receptive field (a
limited spatial range). Thus, spatial contextual information in
larger regions is absent, which in fact has been proven to be
useful for rain removal [18].

To address these limitations, we make effort to develop
a novel rain model that explicitly describes various rain
conditions in real scenes, including rain streak accumula-
tion and heavy rain, and then, design an effective deep
learning architecture based on the novel rain model.
Here, we focus on a single input image. Our ideas are as
follows.

First, we present novel region-dependent rain models.
A rain-streak binary map, where ‘1’ indicates the presence
of individually visible rain streaks, and ‘0’ otherwise, is
injected to model the location information of rain streaks.
To simulate heavy rains, our rain model also considers the
appearance of rain streak accumulation, and the various
shapes and directions of overlapping streaks.

Second,with the newproposed rainmodel, a deep network
is built to detects and removes rain jointly. The automatically
detected rain streak regions provide useful information to con-
strain the rain removal, and enable the network to perform an
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adaptive operation on rain and non-rain regions, preserving
richer details.

Third, a contextualized dilated network is proposed to
enlarge the receptive field and to get context information
from a larger region. The features in this network are refined
recurrently. In each recurrence, the output features are the
aggregated from different convolution paths with different
dilated factors.

Finally, to restore images captured in heavy rain cases
with both rain accumulation and various rain streak direc-
tions, a recurrent rain detection and removal network is con-
structed to progressively removes rain streaks. Extensive
experiments are conducted to demonstrate the superiority of
our method on both synthesized data and real data. Particu-
larly for some heavy rain images, our method achieves con-
siderably good results.

Hence, our contributions are:

1) The first method to inject rain location information
into the rain model, and also to model the atmo-
spheric veils caused by rain streak accumulation as
well as various shapes and directions of overlapping
rain streaks. The new model provides more visually
realistic rain data for training.

2) The firstmethod to jointly detect and remove rains from
single images. With detected rain location information,
ourmethod provides better rain removal results.

3) The first rain removal method that takes a context-
ualized dilated network as its backbone to obtain
more context and reconstruct rich local details.

4) The firstmethod that aims to handle heavy rain using a
recurrent rain detection and removal network, obtain-
ing good results even in significantly complex cases.

Note that, this paper is the extension of our earlier publica-
tion [2]. We summarize the changes Here. First, in our detail
preserving rain accumulation removal method (Section 5.2),
we not only deal with the veiling effect but also restore image
brightness, which further enhances the visibility of the rain
removal results as shown in Fig. 1. Second, in our recurrent

joint rain detection and removal, we employ residual task
learning (Section 5.1). In the second recurrence, we re-esti-
mate the rain streak and background image based on the
input rain image and the estimation in the last recurrence.
The estimated variables and features are forwarded to the
current recurrence to force the current sub-network to learn
the residual features and variables, which leads to a signifi-
cant gain. Fourth, to properly train our joint rain detection
and removal network, we propose a coarse-to-fine multi-
scale loss (Section 4.3), which regularizes a subset of our con-
textualized dilated network to perform rain streak removal.
Besides, we replace the commonly usedMSE loss with the L1

loss (Section 4.3), which also provides a small performance
improvement. This leads to an improved performance.More-
over, we provide the details of our implementation, aswell as
more comprehensive analysis and evaluation.

2 RELATED WORK

Rain image recovery [3], [4], [5], [6], [7], [8], [9], [10], [11] from
video sequences has beenwidely explored. Garg et al. [3], [4],
[5], [6], [19] first construct the appearance model to describe
rain streaks and exploit it to detect rain pixels in video.
Zhang et al. [7] and Brewer et al. [8] focus on the chromaticity
and shape of rain streaks, respectively. Other methods con-
struct novel features to model and detect rain streaks, such as
frequency domain analysis [9], histogram of orientation [10]
and generalized low rank [11]. These methods make full use
of the rich information in videos and the temporal redun-
dancy in adjacent frames to identify rain streaks. In contrast,
our method attempts to jointly detect and remove rain
regions from only a single image.

Compared with the video based deraining problem, the
single image based problem is more ill-posed, due to the
lack of temporal information. Some single-image based rain
removal methods regard the problem as a layer separation
problem. Huang et al. [12] attempt to separate the rain
streaks from the high frequency layer by sparse coding,
with a learned dictionary from the HOG features. However,
the capacity of the morphological component analysis, the
layer separation, and learned dictionary are limited. Thus, it
usually causes over-smoothness of the background. In [11],
a generalized low rank model is proposed, where the rain
streak layer is assumed to be low rank. Kim et al. [20] first
detect rain streaks and then remove them with the nonlocal
mean filter. Luo et al. [15] propose a discriminative sparse
coding method to separate rain streaks from background
images. In [21], Li et al. exploits the Gaussian mixture mod-
els to separate the rain streaks, achieving the state-of-the-art
performance, however, still with slightly smooth back-
ground. In [1], [22], a deep network that takes the image
detail layer as its input and predicts the negative residues is
constructed. It has a good capacity to keep texture details.
However, it cannot handle the heavy rain cases when rain
streaks are dense and significant. In [16], a novel convolu-
tional neural network based on wavelet and dark channel is
proposed to jointly remove rain streaks and haze. In this
paper, we use the deep network to perform joint rain detec-
tion and removal, with the priors and constraints learned
automatically from the synthesized data, and aim to
address the issue of heavy rain removal.

Fig. 1. Visual comparison of different methods to remove heavy rain
streaks and enhance the visibility. Regions in blue boxes show our supe-
riority in rain streak removal. Regions in red boxes show our superiority
in rain accumulation removal. Regions in gray boxes show our superior-
ity in detail preservations. Our method significantly outperforms Detail-
Net [1] and our previous work [2].
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In recent years, deep learning-based image processing
applications emerged with promising performance. These
applications include denoising [23], image completion [24],
super-resolution [25], [26], [27], [28], [29], [30], deblur-
ring [31], deconvolution [32], style transfer [33], compres-
sion artifacts removal [34], [35], etc. There are also some
recent works on bad weather restoration or image enhance-
ment, such as dehazing [36], [37], raindrop and dirt
removal [38], [39], light enhancement [40], [41] and moder-
ate rain removal [1], [22], [42], [43]. With the superior
modeling capacity than shallow models, deep-learning
based methods begin to solve harder problems, such as
blind image denoising [23], image quality assessment [44],
[45], image compression [46], and video coding [47], [48],
[49], [50]. In this paper, we use deep learning to jointly
detect and remove rain.

3 REGION-DEPENDENT RAIN IMAGE MODEL

The widely used rain model [15], [18], [21] is expressed as:

O ¼ Bþ eS; (1)

where B is the background layer, and eS is the rain streak
layer. O is the input image with rain streaks. Eq. (1) suffers
from two deficiencies in rain modeling. First, eS can have a
heterogeneous density, which is hard to be modeled by a
uniform distribution. Second, mixed modeling rain and
non-rain regions may lead to over-smoothness on the non-
rain regions.

To overcome these drawbacks, we propose a generalized
rain model that depicts rain streak location and rain inten-
sity separately to fill the blank of previous works [1], [21],
[51] as follows,

O ¼ Bþ S � R; (2)

which includes a new region-dependent variable R to indi-
cate the locations of individually visible rain streaks, where
� means element-wise multiplication. Here, elements in R
are binary values, where ’1’ indicates rain regions and ’0’
indicates non-rain regions. The new model provides two
benefits: (1) it gives additional information for the network
to learn about rain streak regions, (2) it allows a new rain
removal pipeline to detect rain regions first, and then
to operate differently on rain-streak and non-rain-streak
regions, preserving background details.

In the real world, rain appearance is not only formed by
individual rain streaks, but also by accumulation of rain
streaks. When rain accumulation is dense, the individual
streaks cannot be observed clearly. Aside from rain accumu-
lation, in many occasions, particularly in heavy rain, rain
streaks can have various shapes and directions that overlap
to each other.

To accommodate these two phenomena (i.e., rain streak
accumulation and overlapping rain streaks with different
directions), we create a new model. The model comprises of
multiple layers of rain streaks, representing the diversity of
rain streaks. It also includes the appearance of rain accumu-
lation, by relying on the Koschmieder model that is approxi-
mately applicable to many turbid media, including mist, fog
(e.g., [52]) and underwater (e.g., [53], [54]). Our new rain
model is expressed as:

O ¼ a Bþ
Xs
tr¼1

eStr � R
 !

þ 1� að ÞA; (3)

where each eStr is a layer of rain streaks that have the same
direction. tr is the index of the rain-streak layers, and s is the
maximum number of rain-streak layers.A is the global atmo-
spheric light, a is the atmospheric transmission. Based on
Eq. (3), we can generate synthetic images that are better repre-
sentative of natural images than those generated by Eq. (1).
Thus, we can use these images to train our network. Note that,
the rain accumulation appearance is enforced on the rain-
contaminated image ðBþPs

tr¼1
eStr � RÞ, hence Eq. (3) implies

that,we can handle rain accumulation and rain streak removal
separately, which provides convenience for our training.

4 JOINT RAIN STREAK DETECTION AND REMOVAL

We construct a multi-task network to perform JOint Rain
DEtection and Removal (JORDER) that solves the inverse
problem in Eq. (2) through end-to-end learning. Rain
regions are first detected by JORDER to further constrain
the rain removal. To leverage more context without losing
local details, we propose a novel network structure – the
contextualized dilated network – for extracting the rain dis-
criminative features and facilitating the following rain
detection and removal.

4.1 Multi-Task Networks for Joint Rain Detection
and Removal

Relying on Eq. (2), given the observed rain image O, our
goal is to estimate B, S and R. Due to the ill-posedness
nature of the problem, we employ a maximum-a-posteriori
(MAP) estimation:

arg min
B;S;R

jjO� B� S � Rjj22 þ PbðBÞ þ PsðSÞ þ PrðRÞ; (4)

where PbðBÞ, PsðSÞ and PrðRÞ are the enforced priors on B;S
andR, respectively. Previous priors onB and S include hand-
crafted features, e.g., cartoon texture decomposition [12], and
some data-driven models, such as sparse dictionary [15] and
Gaussian mixture models [21]. For deep learning methods,
the priors ofB, S andR are learned from the training data and
are embedded into the network implicitly.

The estimation of B;S and R is intrinsically correlated.
Thus, the estimation of B benefits from the predicted bS andbR. To convey this, the natural choice is to employ a multi-
task architecture, which can be trained using multiple loss
functions based on the ground truths of R, S and B (see the
blue dash box in Fig. 2).

As shown in the figure, we first exploit a contextualized
dilated network to extract the rain feature representation F.
Subsequently, R, S and B are predicted in a sequential
order, implying a continuous process of rain streak detec-
tion, estimation and removal. The input features for each
task are the concatenation of the general feature F, and the
intermediate estimation results of the previous tasks. There
are several potential choices for the network structures,
such as estimating the three variables in the order of S, R, B,
or in parallel (instead of sequential). The effectiveness of
these choices are evaluated in Section 6.
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4.2 Contextualized Dilated Networks

For rain removal task, contextual information from an input
image is demonstrated to be useful for automatically identi-
fying and removing the rain streaks [18]. Thus, we propose a
contextualized dilated network to aggregate context informa-
tion at multiple scales for learning the rain features. The net-
work gains contextual information in two ways: 1) through a
recurrent structure, which is similar to the recurrent ResNet
[55], and provides an increasingly larger receptive field for
the subsequent layers; 2) in each recurrence, the output fea-
tures aggregate the representations of the three convolution
pathswith different dilated factors and receptive fields.

Specifically, as shown in Fig. 3a, the network first trans-
forms the input rain image into feature space via the first con-
volution. Then, the network refines the features progressively.
In each recurrence, the results from the three convolution
paths with different dilated factors are aggregated with the
input features from the last recurrence via the identity for-
warding. The dilated convolution [56] weights pixels with a
step size of the dilated factor, and thus increases its receptive
fieldwithout losing resolution. Our three dilated paths consist
of two convolutionswith the same kernel size 3� 3. However,
with different dilated factors, different paths have their own
receptive field. As shown in the top part of the gray region in
Fig. 2, path P2 consists of two convolutions with the dilated
factor 2. The convolution kernel is shown as the case of DF¼ 2.
Thus, cascading two convolutions, the three paths have their
receptive fields of 5� 5, 9� 9 and 13� 13.

To provide a formal description, let fkin denote the input
feature map for the recurrent subnetwork at the kth time
step. The output feature map fkout of the recurrent subnet-
work is progressively updated as follows:

fkout ¼ max 0;
X3
tp¼1

Wk
mid;tp

� fkmid;tp
þ bk

mid;tp

� �0@ 1Aþ fkin;

where fkmid;tp
¼ max 0;Wk

in � fkin;tp þ bk
in;tp

� �
. fkin ¼ fk�1

out is the
output features by the recurrent subnetwork at ðk� 1Þth time
step. � denotes the convolution operator. The iteration vari-
able tp denotes the sequence number of dilated convolution
paths. Note that, the by-pass connection lies between fkin and
fkout. The feature map fkout can be viewed as the recovered kth
layer details of the feature maps. LetK denote the total recur-
rence number of the sub-networks, then the relation between
f1in, f

K
out and the overall network is

f1in ¼ maxð0;Winput � finput þ binputÞ;
F ¼ fKout;

(5)

Fig. 2. The architecture of our rain removal method, including the proposed recurrent joint rain detection and removal, and the detail preserving rain-
accumulation removal method placed between the two recurrences. Each recurrence is a multi-task network to perform a joint rain detection and
removal (in the blue dash box). In such a network, a contextualized dilated network (in the gray region) extracts rain features Ft from the input rain
imageOt. Then, Rt, St and Bt are predicted to perform joint rain detection, estimation and removal. Between the two recurrences, the detail preserv-
ing rain-accumulation removal is utilized to enhance the visibility. The features and estimated variables in the last recurrence are forward to the cur-
rent one, and the sub-network in this recurrence stage only learns the residuals.

Fig. 3. The architecture of contextualized dilated networks. (a) The con-
textualized detailed network structure and illustration for the receptive
fields (RF). (b) The corresponding conceptual explanation for the func-
tionality of contextualized dilated networks.
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whereWinput and binput denote the filter parameter and basis
of the convolution layer before the recurrent subnetwork.
Hence, F is the output general features of the contextualized
dilated networks, as one of the inputs of successive
subnetworks.

Besides enlarging the receptive fields, the architecture in
Fig. 3a is also meaningful from the perspective of traditional
signal processing. As shown in Fig. 3b, it behaves similar to
hierarchal multi-scale filters across scales. The signal is first
split into different scales. They are, then, filtered separately
and aggregated. This process is repeated throughout the
network. As shown in Fig. 4, with the larger receptive fields
and using the multi-scale cues, our contextualized dilations
help construct more locally consistent results with less holes
and are capable of preserving local details, as shown in the
‘stem’ regions (bounded by the blue box) in the bottom
panel of the figure.

4.3 Network Training

Let Frrð�Þ; Frsð�Þ and Fbgð�Þ denote the inverse recovery func-
tions modelled by the learned network to generate the esti-
mated rain streak binary map bR, rain streak map bS and
background image bB based on the input rain imageO. We use
Q to collectively represent all the parameters of the network.

We use n sets of corresponding rain images, background
images, rain region maps and rain streak maps oi; gi; ri;

��
siÞgni¼1 for training. We adopt the following joint loss

function to train the network parametrized byQ such that it
is capable to jointly estimate ri, si and gi based on rain
image oi:

LðQÞ ¼ 1

n

Xn
i¼1

jjFrs oi;Qð Þ � sijj þ �1jjFbg oi;Qð Þ � gijj
�

��2 logbri;1ri;1 þ log ð1�bri;2Þð1� ri;2Þ
� ��

;

(6)

where:

bri;j ¼ exp Frr;j oi;Qð Þ� �P2
k¼1 exp Frr;k oi;Qð Þ� � ; j 2 1; 2f g:

Parameters �1 and �2 are the weighting factors. The net-
work is trained to minimize the above loss, using the
back-propagation. To better regularize the training of the
contextualized dilated network with the recurrent multi-
path structure, we further extend the loss function to be the
combination of losses of several sub-networks. We use Q1

and Q2 to denote the parameters of the sub-networks with
only path P1 and paths P1, P2 in each recurrence of Fig. 3,
respectively. Then, the losses of these two sub-networks are
denoted to L1ðQ1Þ and L2ðQ2Þ. We train these two losses
with LðQÞ together:

LaðQÞ ¼ LðQÞ þ L1ðQ1Þ þ L2ðQ2Þ: (7)

5 RAIN REMOVAL IN REAL IMAGE

In this section, we further enhance our network to handle
both multiple rain-streak layers (where each layer has its
own streak direction) and rain accumulation. Several JOR-
DER networks are cascaded to perform progressive rain
detection and removal and recover the background layer
with increasingly better visibility.

5.1 Recurrent JORDER with Residue Task Learning

Wedefine the process of the networkT �ð Þ in the blue dash box
of Fig. 2, which generates the rain streak based on the infor-
mation of previous estimationOt and the rain inputO. Then,
our recurrent rain detection and removal works as follows,

rt;DRt;DSt;DFt½ � ¼ T Ot;Oð Þ;
Rt ¼ DRt þ Rt�1;
St ¼ DSt þ St�1;
Ft ¼ DFt þ Ft�1;
Bt ¼ O� rt;

Otþ1 ¼ Bt;

(8)

where R0 ¼ 0, S0 ¼ 0 and F0 ¼ 0. In each iteration t, based
on the rain inputO andOt, the rain streak rt is re-estimated.
We find that, once the residual task learning is used, our
original scheme which accumulates the predicted residual
and propagates it to the final estimation via updating Ot

and Bt becomes no more effective. We also forward the fea-
tures of each residual block in Tð�Þ to the next one, enforcing
Tð�Þ at the next stage only learns the residual features. In
this way, the method removes rain streaks progressively,
part by part, based on the intermediate results from the pre-
vious step. The complexity of rain removal in each iteration
is consequently reduced, enabling better estimation, espe-
cially in the case of heavy rain.

5.2 Detail Preserving Rain-Accumulation Removal

Distant rain streaks accumulate and form rain atmospheric
veil, which is visually similar to fog. It causes visibility deg-
radation, and thus needs to be removed. We call this process
rain-accumulation removal. Since the degradation effect
and the model (Eq. (3)) are similar to those of fog, our rain-
accumulation removal is essentially similar to defogging
(e.g., [36])). Like in defogging, the output of our rain
removal clears up the veiling effect and boosts the contrast.

Eq. (3) suggests that the rain-accumulation removal
should be the first step in the whole process of deraining,
simply as pre-processing. However, in real cases, it is more

Fig. 4. Comparison of rain removal results with and without the contextu-
alized dilation. (a) Rain images. (b) The results generated by the network
without the contextualized dilation. (c) The results generated by the net-
work with the contextualized dilation.
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complicated. Since, when we apply the rain-accumulation
removal as pre-processing, it degrades the quality of rain
streaks. All rain streaks, including those that are already
sharp and clearly visible, are further boosted, causing the
streaks to look different from those in the training images.
To address this problem, instead of applying the rain-
accumulation removal as pre-processing, we apply it pro-
gressively in combination with our rain-streak removal.
First, we apply rain-streak removal, followed by rain-
accumulation removal, and then apply rain-streak removal
again. This, as it turns out, is beneficial, since the rain-
accumulation removal will make the appearance of less
obvious rain streaks (which are likely unnoticed by the first
round of the streak removal) become more apparent.

In a rainy day, particularly in heavy rain, the scenes are
darker than those in a clear day. This is because usually the
sky is overcast. Yet, the veiling effect (or the backward scatter-
ing) of rain accumulation increases the brightness of the scene.
Because of this, when we remove the veiling effect, the out-
puts of our rain-accumulation removal can be perceived as
darker than normal. To overcome this problem: First, in gen-
erating synthetic training data, we decrease the brightness of
our images before adding the veiling effect. With this, we
want to tell the network about the darkening effect due to the
overcast sky. Second, in every epoch of training, we addition-
ally add two purely white and black training pairs into the
training set of the current epoch. This operation makes the
network capable of generating results with white and black
colors. It equals to enforcing color consistency constraint [57],
[58], [59], [60] on the networks, which is beneficial for decreas-
ing the color bias of the training data and generating naturally
looking results in colors. For our rain-accumulation removal,
we create another network based on contextualized dilated
network (see the first inset in Fig. 2).

5.3 Network Training

We train the networks for rain streak and rain accumulation
removal separately, but implement them jointly in the test-
ing phase, as shown in Fig. 5. The reason of not using an
end-to-end training is that the degradation of rain accumu-
lation is multiplicative and its recovery usually has larger
errors than those of rain streak removal. Thus, joint training
can contaminate the recovery of rain streak removal, which
in fact has a larger impact on human visual perception.

Our recurrent JORDAR network introduces an extra time
variable t to the loss function LaðQÞ in Eq. (7) and gives

LaððQt; tÞ, where LaðQ0; 0Þ ¼ LaðQ0Þ. When t > 1, LaðQt; tÞ
is equivalent to LaðQÞ that replaces oi and Q by oi;t and Qt,
respectively, where oi;t is generated from the tth iterations
of the process Eq. (8) on the initial oi. Then, the total loss
function La

Iter for training T is

La
Iterð Q0; . . . ;Qtf gÞ ¼

Xt
t¼0

LaðQt; tÞ: (9)

The rain-accumulation removal network is trained with
the synthesized data generated by random transmission
values and sampled background images. We calculate the
transmission values based on depth information using, e.g.,
Make3D, an outdoor scene and 3D dataset [61].

Considering Eq. (3) and given the inputOacc, the network
estimates the transmission map â. Then, using Qacc to
collect the related parameters of the rain-accumulation
removal network, the loss function is derived from:

Lacc Qaccð Þ ¼ Qacc þ â� 1

âþ �
� Bacc

���� ����2
2

; (10)

where Bacc is the ground-truth accumulation-free image, � is
a positive small float number, set as 0.00001. Following the
synthesis configuration of DehazeNet [36], the atmospheric
light,A, is set as a matrix full of one. This setting is the hard-
est case. Training with it makes the network not only capa-
ble of handling hard cases, but also achieve greater
robustness to other settings in practice. Note that, in testing
phase, A is estimated online.

6 EXPERIMENTAL RESULTS

Datasets. We compare our method with state-of-the-art
methods on a few benchmark datasets: (1) Rain121 [21],
which includes 12 synthesized rain images with only one
type of rain streaks; Rain100L, which is the synthesized data
set with only one type of rain streaks; (2) Rain20L, which is
a subset of Rain100L; (3) Rain100H, which is our synthesized
data set with five streak directions. Note, while it is rare for
a real rain image to contain rain streaks in many different
directions, synthesizing this kind of images for training can
boost the capacity of the network.

The images for synthesizing Rain100L, Rain20L and
Rain100H are selected fromBSD200 [62]. The dataset for train-
ing our network and another deep learning baseline – SRCNN
for deraining – is BSD300, excluding the ones appeared in
Rain12. The rain streaks are synthesized in two ways: (1) the
photorealistic rendering techniques proposed by [5]; (2) the
simulated sharp line streaks along a certain direction with a
small variation within an image. The testing rain images are
taken from the previous publications [15], [21], and selected
from Google, Bing and Baidu search engines. The testing
images show dense rain streaks and most of them also show
rain accumulation.We release our training and testing sets, as
well as our image rendering code to public.

Baseline Methods. We compare the four versions of our
approaches, JORDER- (one version that has only one convolu-
tion path in each recurrence without using dilated convolu-
tions), JORDER (Section 4 of [2]), JORDER-R (Section 5.1 of [2]),

Fig. 5. The training and testing paradigm of JORDER-R-DEVEIL.

1. http://yu-li.github.io/
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JORDER-R-DEVEIL (Section 5.2 of [2]), JORDER-E (one version
with the improvements presented in our paper), JORDER-E-
DEVEIL (JORDER-E + detail preserving rain-accumulation
removal) with state-of-the-art methods: image decom-
position (ID) [12], CNN-based rain drop removal (CNN) [38],
discriminative sparse coding (DSC) [15], layer priors (LP) [21],
deep detail network (DetailNet) [1], directional global sparse
model (UGSM) [63], joint convolutional analysis and synthesis
sparse representation (JCAS) [64], density-aware multi-stream
dense network (DID-MDN) [65], conditional generative adver-
sarial network (ID-CGAN) [66], and a common CNN baseline
for image processing – SRCNN [25]. All ourmethods, SRCNN,
and DetailNet are trained from scratch. Other methods come
from online available resources kindly provided by the
authors. For evaluations on synthesized data, we train the
modelwith the corresponding trainingdata from scratch,with-
out any fine-tuning.

For the experiments on synthesized data, two metrics
Peak Signal-to-Noise Ratio (PSNR) [67] and Structure Simi-
larity Index (SSIM) [68] are used as comparison criteria. We
evaluate the results only in the luminance channel, which
has a significant impact on the human visual system to per-
ceive the image quality. Our results and codes are publicly
available.

Implementation Details. JORDER uses 20 layers as its stan-
dard setting. The skip connections are set with an interval
of 2 convolution layers. The number of channels in each
convolution layer is fixed as 64. The training and testing
images are cropped into small sub-images with a size of
48� 48 pixels. We use flipping (up-down and left-right)
for data augmentation. For each training image, three
augmented images are generated. The final training set con-
tains around 1,200,000 sub-images for rain-streak and rain-
accumulation removal, respectively. Empirically, �1 is set as
0.01, and �2 is set as 0.001, receptively. The losses of rain
detection and estimation are auxiliary for decreasing rain
removal loss.

We train our model on Caffe [69]. Stochastic gradient
descent (SGD) is used for training the model. In particular,
we set the momentum as 0.9, the initial learning rate as
0.001 and change it to 0.0001 after 81 epochs, and to 0.00001
after 108 epochs. We only allow at most 135 epochs. The
learning rate of the last convolution layer is set 0.01 times

the global one during the whole training process. The trans-
mission is randomly sampled from a uniform distribution
with a range 0:5; 1½ �, and g used for synthesizing low light
images is randomly sampled from a uniform distribution
with a range 1:0; 1:5½ �.

Quantitative Evaluation. Tables 1 and 2 show the results of
different methods. As observed, our method considerably
outperforms other methods in terms of both PSNR and
SSIM on Rain12, Rain100L, Rain100H and Rain800. Our JOD-
DER-R achieves considerably better results than the other
methods. The PSNR of JORDER-R gains over JORDER more
than 1dB on Rain100H. Such a large gain demonstrates that
the recurrent rain detection and removal significantly boosts
the performance on synthesized heavy rain images. Princi-
pally, compared with heavy rain cases, in normal rain, the
rain streaks are sparser, and the rain accumulation is less
dense. Thus, it is easier to remove normal rains than heavy
rains. Our rain model also is capable of synthesizing normal
rain images, and our training set includes those images.
Hence, our method, which is designed to handle heavy
rains, can also be generalized to handle normal rains, and
achieves good results.

Qualitative Evaluation. Fig. 6 shows the results of real
images. For fair comparisons, we use JORDER-R to process
these rain images and do not handle rain accumulation on
these results, to be consistent with other methods. As
observed, our method significantly outperforms them and
is successful in removing the majority of rain streaks. We
also compare all the methods in two extreme cases: dense
rain accumulation, and heavy rain as shown in Fig. 7. Our
method achieves promising results in removing the major-
ity of rain streaks, enhancing the visibility and preserving
details.

Running Time. Table 3 compares the running time of sev-
eral state-of-the-art methods. All baseline methods are
implemented in MATLAB. Our methods are implemented
on the Caffe’s Matlab wrapper. CNN rain drop and some
versions of our methods are implemented on GPU, while
others are based on CPU. Our GPU versions is computation-
ally efficient. The CPU version of JORDER, a lightest version
of our method, takes up the shortest running time among all
CPU-based approaches. In general, our methods in GPU are
capable of dealing with a 500� 500 rain image less than 10s.

TABLE 1
PSNR Results Among Different Methods

Baseline Rain12 Rain100L Rain100H Rain800

ID [12] 27.21 23.13 13.78 20.54
DSC [15] 30.02 24.16 15.66 22.46
LP [21] 32.02 29.11 14.26 23.68
CNN [38] 26.65 23.70 13.21 23.95
SRCNN [25] 34.41 32.63 18.29 25.10
DetailNet [1] 35.31 33.50 20.12 25.22
UGSM [64] 33.30 28.83 13.40 23.12
JCAS [65] 33.09 29.91 14.26 22.25
DID-MDN [66] 30.14 28.27 13.85 22.55
ID-CGAN [67] 20.78 23.39 16.86 23.81
JORDER- 35.86 35.41 20.79 25.61
JORDER 36.02 36.11 22.15 26.03
JORDER-R 36.21 36.62 23.45 26.73
JORDER-E 36.14 37.10 24.54 27.08

TABLE 2
SSIM Results Among Different Methods

Baseline Rain12 Rain100L Rain100H Rain800

ID [12] 0.7534 0.6991 0.3968 0.6739
DSC [15] 0.8679 0.8663 0.5444 0.7060
LP [21] 0.9082 0.8812 0.4225 0.7954
CNN [38] 0.7829 0.8142 0.3712 0.6589
SRCNN [25] 0.9421 0.9392 0.6124 0.8232
DetailNet [1] 0.9485 0.9444 0.6351 0.8228
UGSM [64] 0.9323 0.8823 0.5089 0.7675
JCAS [65] 0.9276 0.9041 0.4837 0.7682
DID-MDN [66] 0.8762 0.8569 0.3748 0.7639
ID-CGAN [67] 0.8519 0.8186 0.4921 0.8072
JORDER- 0.9534 0.9632 0.5978 0.8378
JORDER 0.9612 0.9741 0.6736 0.8501
JORDER-R 0.9644 0.9820 0.7490 0.8683
JORDER-E 0.9593 0.9795 0.8024 0.8716
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Features Visualization for First and Last Layers. To have a
glimpse on what happening in our network, we visualize
the feature maps produced by our network. Fig. 8 shows
the feature maps of the first and last convolution layers. The
24 feature maps with the highest responses, measured by
variances of the feature maps, are presented. Fig. 8b clearly
shows that the first convolution behaves like calculating
image gradients, where interestingly the texture details that
are uncorrelated to the rain streaks are preserved. From the
visualization results, many grass details appear in these
feature maps. That is to say, in the shallow layers, the image
details including rain streaks and normal textures are both
extracted from the input rain image. After the transfor-
mations by the middle layers of the network, the feature
maps in the last layer are highly correlated with rain streaks
and their context, as shown in Fig. 8c. For some feature
maps, only rain streaks are observed, as shown in the red
blocks of Fig. 8c. Although some normal textures are also
included as shown in the blue blocks of Fig. 8c, these tex-
tures are consistent within a map. It demonstrates that the
network plays a role of texture separation from shallow
layers to deep layers.

Evaluation on Texture Preservation. We compare the tex-
ture preserving capacity among rain removal methods by
computing the absolute differences between the ground-
truths and the predicted clean background. Fig. 9 clearly
shows that, DetailNet and JORDER are significantly better
than LP [21], DID-MDN [65], ID-CGAN [66], JCAS [64], and
UGSM [63]. Compared to DetailNet, JORDER generates
more sparse results and only has large responses in the
texture regions along the vertical directions.

Evaluations on Streak and Rain-Accumulation Removal. Rega-
rding the order of rain-streak removal and rain-accumulation
removal, we compare a few different combinations: (1) rain-
streak removal alone, or derain, (2) rain-streak removal twice,
derain-derain, (3) rain-streak removal followed by rain-
accumulation removal, derain-deveil, (4) rain-accumulation
removal followed by rain-streak removal, deveil-derain, and
finally (5) our proposed order, derain-deveil-derain. Fig. 10
shows the comparison results.

Evaluation on Detail Preserving Rain-Accumulation Removal.
We compare the results of different rain-accumulation
methods. As shown in Fig. 11, without low light degra-
dation in training data generation, the rain removal results

Fig. 6. Results of different methods on synthesized and real images. Zooming in the images will show that our method is superior to others. The 1st-
2st panels: synthesized rain images. The 2rd-4th panels: real rain images.
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become darker and some details turn invisible (R in
Fig. 11)). Training with low light degradation enhances visi-
bility of dark details (From R to L). The added white balance
constraint makes the rain removal results look more natu-
rally in colors (From L to L+W).

Computer Vision Applications. While our method provides
visually pleasing results, it can also improve computer
vision tasks. Here, we experiment with image classification
with and without rain removal. We synthesize 50,000, 2,000,
and 4,952 rain images with the validation set of ImageNet-
1k dataset, the validation set of ADE20K Dataset [70], and
the testing set of VOC 2007 [71] for object classification,
semantic segmentation, and object detection. The results of
object classification, semantic segmentation, and object
detection with and without rain removal are shown in
Table 4 and 5. The top-1, top-5, top-10 accuracies are used
as metrics and VGG-19 [72] is used as the classification
model. Mean IOU and accuracy are used as the metrics of
semantic segmentation, and Mean AP is used as the metric
of object detection. As can be observed from the results, our
rain removal significantly boosts the performance on all
metrics and push them to get close to their rain-free ones.

We also show two cases of applying our method as pre-
processing for a commercial computer vision system, Clari-
fai,2 which is an advanced image recognition system based
on a deep convolutional network. The two images are shown
in Fig. 12. Before rain removal, these images are inaccurately
categorized as ‘Rain’ and ‘Nature’. After rain removal by our
method, they are labeled correctly as ‘People’.

Comparison to State-of-the-art Dehazing Methods. To dem-
onstrate the superiority of our rain accumulation removal
method, we compare the proposed method with other state-
of-the-art dehazing methods in Fig. 13. As one can observe,

the result of Nonlocal has color shift. DehazeNet and
GFN tend to produce darker results and retains some accu-
mulation. Comparatively, our rain accumulation removal
method successfully removes most accumulation and lights
up dark details in the images.

Case Studies for Rain Types on Rain Removal Performance.
We compare four types of rains: occluding rain streaks, rain
accumulation, veiling rain streaks, and sparkle rain streaks
in Fig. 14. It is observed from the results that, our method
successfully removes most of occluding rain streaks, rain
accumulation, and veiling rain streaks. For sparkle rain
streaks, ID-CGAN, DID-MDN and LP sometimes achieve
superior performance to our JORDER network. The main
reason is that, our training set includes small little sparkle
rain streaks, and our JORDER network is not imposed with
any smoothness constraint, such as total variation. In the
future, we will try to incorporate local smoothness con-
straints, such as nonlocal regularization terms or low rank
priors, into our JORDER network to make it perform better
in the cases with sparkle rain streaks.

The Effect of Rain Models and Training Datasets. We
compare several JORDER networks trained with different
datasets: rain100L, rain100H and rain800. The first one is
synthesized with single-layer rain streaks. The second is

Fig. 7. Examples of our method on heavy rain and mist images.

TABLE 3
The Time Complexity (in Seconds) of JORDER Compared

with State-of-the-Art Methods. JR and JRD Denote
JORDER-R and JORDER-R-DEVEIL, Respectively

Baseline CNN (G) [38] DSC (C) [15] LP (C) [21]

80×80 449.94 14.32 35.97
500×500 1529.85 611.91 2708.20
Baseline DetailNet (G) [1] UGSM (C) [64] JCAS (C) [65]
80×80 0.02 0.09 2.59
500×500 0.58 2.3 179.56
Baseline JORDER (C) JORDER (G) JR (G)
80×80 2.97 0.11 0.32
500×500 69.79 1.46 3.08
Baseline JRD (G) DID-MDN (G) [66] ID-CGAN (G) [67]
80×80 0.72 0.56 0.03
500×500 7.16 2.94 0.57

(G) and (C) denote the implementation on GPU and CPU, respectively.

Fig. 8. Visualization of features in the first and last convolution layers for
a 150×150 sub-image. (a) The input region. (b) The 24 feature maps
with the highest responses in the first layer. (c) The 24 feature maps
with the highest responses in the last layer.2. https://www.clarifai.com/.
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synthesized with multi-layer rain streaks. The streaks used
in these two cases are synthesized based on a raindrop oscil-
lation model [5]. The last one is synthesized from random
noises with different noise levels. As one can observe,
the synthesized training data plays an important role in
removing rains in real cases. The JORDER network trained
on Rain100H achieves significantly superior rain streak
removal performance than those trained on Rain100L and
Rain800, which demonstrate the effectiveness of our rain
synthesis model. The results generated by the model trained
on Rain100L have many residual streaks. The results gener-
ated by the model trained on Rain800 may lead to unex-
pected light changes, as shown in the last row of Fig. 15.

Evaluations of Different Network Architectures. Concerning
the choice of our architecture (Fig. 2), we also compare a
few different possible architectures, where all of them
intend to estimate B;S;R:

arg min
B;S;R

jjO� B� SRjj22 þ PbðBÞ þ PsðSÞ þ PrðRÞ: (11)

Principally we have two choices for the network structures
as shown in Fig. 16: parallel and sequential. Specifically, con-
sidering the prediction order of the variables, there are three
candidates:

1) Sequential structure 1: Predicting R followed by S
and then B, which is denoted as RSB and our final
proposed architecture

Fig. 9. Texture preservation comparison. The left half part of each image is the absolute difference between the background prediction and the
ground truth image. In the right half part, the value is enlarged by a factor of 5 for better observation.

Fig. 10. The results of JORDER-R-DEVEIL in different orders.

Fig. 11. The results with and without the detail preserving rain-accumula-
tion removal. R denotes a raw model, trained without low light degrada-
tion and white balance constraint. L denotes the version trained with low
light degradation. L+W denotes the version trained with low light degra-
dation and white balance constraint.
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2) The parallel structure: Predicting S and R in parallel
based on F), denoted as PAR

3) Sequential structure 2: Predicting S followed by R
and then B in order), denoted as SRB

4) Vanilla ResNet: A four-layer ResNet with only one
recurrence to directly predict the background image,
denoted as RAW

Note that, all the experiments here do not include the
contextualized dilated convolution.

We compare the training performance and objective
quality of these possible architectures on Rain20L with
PSNR and SSIM as the evaluation metrics as shown in
Fig. 19 and in Table 6. The experimental results clearly
show the superiority of PAR and RSB.

Ablation Study for Contextualized Dilated Convolution. We
look further into the benefit of the contextualized dilated

TABLE 4
The Error Rate of VGG-19 with / without Rain Removal as a

Preprocessing on ImageNet-1k Validation Dataset

Metric top-1(%) top-5(%) top-10(%)

Without Streaks 66.15 86.95 91.53
Without Rain Removal 43.53 67.09 75.12
With Rain Removal 60.89 83.16 88.73

Fig. 12. Image recognition results on the images before and after rain-
streak removal. Top panel: (a) Before, labeled as ‘Rain’. (b) After,
labeled as ’People’. Bottom panel: (a) Before, labeled as ‘Nature’. (b)
After, labeled as ‘People’.

Fig. 13. Visual comparison of our rain accumulation removal with state-
of-the-art dehazing algorithms on real rain images with rain streak accu-
mulation. (a) Input. (b) JORDER-R. (c) DehazeNet [36]. (d) Nonlocal [74].
(e) GFN [75]. (f) Proposed. All methods take the rain streak removal
results produced by our JORDER-R as their inputs. It is observed that,
our rain accumulationd removal method is successful in removing most
accumulation and lighting up details in dark regions.

Fig. 14. Visual results of different methods on four types of rains. (a)
Occluding rain streaks. (b) Rain accumulation. (c) Veiling rain streaks.
(d) Sparkle rain streaks. From left to right: input rain image, DSC [15],
LP [21], DetailNet [1], DID-MDN [66], ID-CGAN [67], UGSM [64],
Proposed.

TABLE 5
The Semantic Segmentation and Object Detection Performance
of Pretrained Models with / without Rain Removal as a Prepro-
cessing onMIT ADE20K and VOC 2007 Validation Dataset

Metric Mean IOU Accuracy (%) Mean AP

Dataset MIT ADE20K VOC 2007
Without Streaks 0.4063 79.63 0.7014
Without Rain Removal 0.3746 77.61 0.6618
With Rain Removal 0.2675 67.95 0.5755
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convolution to the final performance. Three coupled ver-
sions are involved in the comparisons: PARD, which is
boosted PAR with the contextualized dilated convolution;
RSBD, which is boosted RSB with the contextualized dilated
convolution; and, JORDER- (10-layer RSB), which is JOR-
DER (10-layer RSBD) without the contextualized dilated
convolution. The training performance is shown in Figs. 17
and 18. The quantitative comparison is shown in Table 7.
The experimental results clearly demonstrate the positive
effect of the contextualized dilated convolution on the final
objective performance. These results suggest a valuable con-
clusion: RSBD structure is better at acquiring contextual
information than PARD. This is the reason why our final
choice of architecture is RSBD (Fig. 2).

Evaluations in Potential Architectures of Contextualized
Dilated Convolutions. The performance of JORDER network
with and without contextualized dilated convolutions (CDC)

Fig. 15. Comparison of rain removal results generated by the models
trained on different training sets. (a) Input images. (b) Results generated
by the network trained on Rain100L. (c) Results generated by the net-
work trained on Rain100H. (c) Results generated by the network trained
on Rain800.

Fig. 16. Potential choices for network architectures.

TABLE 6
PSNR and SSIM Results of the Four Versions

Baseline RSB PAR SRB RAW

PSNR 34.66 34.63 34.28 33.94
SSIM 0.9622 0.9624 0.9593 0.9576

Fig. 17. The PSNR result with and without contextualized convolutions in
the training process. We drop the learning rate from 0.001 to 0.0001
when reaching 1.5�105 iterations and from 0.0001 to 0.00001 when
reaching 2�105 iterations.

Fig. 18. The SSIM result with and without contextualized convolutions in
the training process. We drop the learning rate from 0.001 to 0.0001 when
reaching 1.5�105 iterations and from 0.0001 to 0.00001 when reaching
2�105 iterations.

TABLE 7
Objective Evaluation for the Effect of Contextualized

Dilated Convolution

Baseline PAR PARD RSB RSBD

Dataset Rain20L Rain20L

PSNR 34.63 35.06 34.66 35.16
SSIM 0.9624 0.9655 0.9622 0.966
Baseline JORDER- JORDER JORDER- JORDER

Dataset Rain100L Rain100H

PSNR 35.41 36.11 20.79 22.15
SSIM 0.9632 0.9711 0.5978 0.6736
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is provided in Table 8. The parallel network signifies the ver-
sion illustrated in Fig. 3, and the sequential network signifies
that the convolution paths with different dilated factors

are chained together. It is observed that, adding contextual-
ized dilated convolutions significantly improves the rain
removal performance. Compared with the parallel architec-
ture, the sequential architecture further provides a perfor-
mance gain.

We also evaluate the performance of JORDER networks
in Table 9 where dilated convolutions are replaced by pool-
ing and up-sampling layers (JPS), and stride convolution
and transposed convolution layers (JST), respectively. It is
observed that, the multi-path pooling and up-sampling
layers (JPS) lead to a performance drop. The stride convolu-
tion and transposed convolution layers (JST) can also
improve the objective metrics, and only lead to an inferior
performance to JORDER, which demonstrates the superior
capacity of our JORDER to obtain context while keeping
rich local details.

Visualization of Side Features W/ and W/O Rain Detection.
We visualize the side features with and without a rain
detection loss in Fig. 20. It is observed that, the information
captured by automatic learned side features is mostly cor-
related to the rain-free context, which demonstrates the
necessity of an imposed rain detection loss in our JORDER
network.

Fig. 20. Comparison of the learned features with and without a rain detection loss. (a) Input rain images. (b) Rain features without a rain detection
loss. (c) Detected rain masks in JORDER.

Fig. 19. The training performance of the four networks. We drop the
learning rate from 0.001 to 0.0001 when reaching 1.5�105 iterations and
from 0.0001 to 0.00001 when reaching 2�105 iterations.

TABLE 8
The Performance of JORDER Network with and w/o

Contextualized Dilated Convolutions (CDC)

Baseline Metric Rain100L Rain100H Rain800

w/o CDC

PSNR

35.41 20.79 25.61
CDC (parallel) 36.11 22.15 26.03
CDC (sequential) 36.37 22.45 26.23

w/o CDC

SSIM

0.9632 0.5978 0.8378
CDC (parallel) 0.9741 0.6736 0.8501
CDC (sequential) 0.9767 0.6972 0.8575

The parallel one is illustrated in Fig. 3, and the sequential one signifies that the
convolution paths with different dilated factors are chained together.
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Robustness Analysis of Inaccurate Rain Detection. We evalu-
ate the effect of inaccurate rain detection on the final perfor-
mance. We randomly invert the detected rain mask and
calculate their PSNR and SSIM results in Table 10. As one
can observe that, inverting the detected rain mask leads to a
performance drop. When 50 percent rain mask pixels are
inverted, the PSNR and SSIM of our JORDER drop by a
margin of 0.57 dB, 0.67 dB, 0.40 dB and 0.0131, 0.0713,
0.0081 on Rain100L, Rain100H, Rain800, respectively, which
indicates that the detected rain mask indeed plays a guid-
ance role in rain streak removal of JORDER network.

Analysis of Over-Detection and Under-Detection of Rains. We
evaluate the effect of over-detection and under-detection of
rains on the final performance. We use dilation and erosion
operations to dilate and erode the detected rain mask. The
evaluation results are presented in Tables 11 and 12. The
numbers after Exp and Shrink denote the changed percent-
age of areas after dilation and erosion operations, respec-
tively. As one can observe that, over-detection and under-
detection lead to a performance drop, which indicates that

the detected rain mask indeed plays a guidance role in rain
streak removal of JORNERnetwork.

Ablation Analysis for Our Improvements. We perform an
ablation analysis for the components added in this paper on
Rain100H compared with our previous work [2] in Table 13.
RTL denotes the residual task learning (Section 5.1). CF-
MSL denotes the coarse-to-fine multi-scale loss (Section 4.3).
L1 denotes to use L1 norm of the difference instead of MSE
as the training loss (Section 4.3). Every component is added
into the network from left to right. The results demonstrate
the effectives of each component in our paper. Residual task
learning boosts the performance a lot. Coarse-to-fine multi-
scale loss and L1 further improve our performance com-
pared to pure L2 loss.

User Study in Subjective Evaluation. We employ paired
comparison approach, where the participants are shown
two results at a time and are asked to simply choose the pre-
ferred one by rain removal quality. The rank product [75]
results are presented in Table 14. We have a total of 25 par-
ticipants, including both domain experts and generally
knowledgeable individuals, each given 252 pairwise com-
parisons over a set of eight testing images with eight differ-
ent rain removal methods. Compared with others, the
proposed method achieves the best visual quality.

Analysis for Recurrence Number of ContextualizedDilated Con-
volutions. We analyze the effect of the recurrence number of
contextualized dilated convolutions on the deraining perfor-
mance. The results are presented in Figs. 21 and 22. It can
observed that, higher PSNR and SSIM results are obtained
when more recurrences are used. The marginal PSNR and
SSIMgains convergewhen the recurrence number reaches 9.

TABLE 10
The Objective Evaluation When the Detected Rain

Masks Are Inaccurate

Error Rate 0% 25% 50%

Metric PSNR SSIM PSNR SSIM PSNR SSIM
Rain100L 36.11 0.9741 35.88 0.9671 35.68 0.9610
Rain100H 22.15 0.6736 21.78 0.6378 21.48 0.6023
Rain800 26.03 0.8501 25.81 0.8457 25.63 0.8420

TABLE 9
The Performance of JORDER Networks Where Dilated
Convolutions Are Replaced by Pooling and Up-Sampling
Layers (JPS), and Stride Convolution and Transposed

Convolution Layers (JST)

Baseline Rain12 Rain100L Rain100H Rain800

Metric PSNR

JORDER- 35.86 35.41 20.79 25.61
JPS 35.62 35.11 20.53 25.42
JST 35.93 35.82 21.67 25.77
JORDER 36.02 36.11 22.15 26.03

Metric SSIM

JORDER- 0.9534 0.9632 0.5978 0.8378
JPS 0.9511 0.9584 0.5682 0.8212
JST 0.9589 0.9764 0.6713 0.8519
JORDER 0.9644 0.9820 0.7490 0.8683

TABLE 11
The PSNR Results in the Case of Over-Detection

and Under-Detection

Baseline Original Exp-10% Exp-20% Exp-30%

Rain100L 36.11 36.01 35.90 35.85
Rain100H 22.15 21.99 21.82 21.71
Rain800 26.03 25.87 25.78 25.76

Baseline / Shrink-10% Shrink-20% Shrink-30%

Rain100L / 36.00 35.91 35.82
Rain100H / 22.02 21.78 21.66
Rain800 / 25.86 25.79 25.77

TABLE 12
The SSIM Results in the Case of Over-Detection

and Under-Detection

Baseline Original Exp-10% Exp-20% Exp-30%

Rain100L 0.9741 0.9712 0.9683 0.9651
Rain100H 0.6736 0.6501 0.6412 0.6254
Rain800 0.8501 0.8470 0.8463 0.8448

Baseline / Shrink-10% Shrink-20% Shrink-30%

Rain100L / 0.9716 0.9686 0.9646
Rain100H / 0.6500 0.6410 0.6257
Rain800 / 0.8472 0.8464 0.8449

TABLE 13
Ablation Analysis for the Technical Improvements

Compared to JORDER-R [2]

Baseline JORDER-R RTL CF-MSL L1

PSNR 23.45 24.39 24.43 24.54
SSIM 0.7490 0.7992 0.7987 0.8024

TABLE 14
Comparison of the Rank Product of Different Methods

Method LP DetailNet ID-CGAN DID-MDN

Rank 5.25 3.54 4.46 4.41
Method DSC JCAS UGSM Proposed
Rank 7.07 2.92 5.35 1.00

The smaller, the better.
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7 CONCLUSION

In this paper, we have introduced a new deep learning
based method to remove rain from a single image, even in
the presence of rain streak accumulation and heavy rain. A
new region-dependent rain image model is proposed for
additional rain detection and is further extended to simulate
rain accumulation and heavy rains. Based on this model, we
developed a fully convolutional network that jointly detect
and remove rain. Rain regions are first detected by the net-
work which naturally provides additional information for
rain removal. To restore images captured in the environ-
ment with both rain accumulation and heavy rain, we intro-
duced an recurrent rain detection and removal network that
progressively removes rain streaks, embedded with the
rain-accumulation removal network. Evaluations on real
images demonstrated that our method outperforms state-
of-the-art methods.
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